能够铺满地面的正多边形组合是A.正三角形和正五边形B.正方形和正六边形C

发布时间:2020-07-28 17:48:36

能够铺满地面的正多边形组合是A.正三角形和正五边形B.正方形和正六边形C.正方形和正五边形D.正五边形和正十边形

网友回答

D解析分析:正多边形的组合能否铺满地面,关键是看位于同一顶点处的几个角之和能否为360°.若能,则说明能铺满;反之,则说明不能铺满.解答:A、正五边形和正三边形内角分别为108°、60°,由于60m+108n=360,得m=6-n,显然n取任何正整数时,m不能得正整数,故不能铺满,故此选项错误;B、正方形、正六边形内角分别为90°、120°,不能构成360°的周角,故不能铺满,故此选项错误;C、正方形、正五边形内角分别为90°、108°,当90n+108m=360°,显然n取任何正整数时,m不能得正整数,故不能铺满,故此选项错误;D、正五边形和正十边形内角分别为108、144,两个正五边形与一个正十边形能铺满地面,故此选项正确.故选D.点评:此题主要考查了平面镶嵌,两种或两种以上几何图形镶嵌成平面的关键是:围绕一点拼在一起的多边形的内角加在一起恰好组成一个周角.需注意正多边形内角度数=180°-360°÷边数.
以上问题属网友观点,不代表本站立场,仅供参考!