在△ABC中,tanA?sin2B=tanB?sin2A,那么△ABC一定是A.锐角三角形B.直角三角形C.等腰三角形D.等腰三角形或直角三角形
网友回答
D解析分析:把原式利用同角三角函数间的基本关系变形后,得到sin2A=sin2B,由A和B为三角形的内角,得到2A与2B相等或互补,从而得到A与B相等或互余,即三角形为等腰三角形或直角三角形.解答:原式tanA?sin2B=tanB?sin2A,变形为:=,化简得:sinBcosB=sinAcosA,即sin2B=sin2A,即sin2A=sin2B,∵A和B都为三角形的内角,∴2A=2B或2A+2B=π,即A=B或A+B=,则△ABC为等腰三角形或直角三角形.故选D.点评:此题考查了三角形形状的判断,熟练掌握三角函数的恒等变换把原式化为sin2A=sin2B是解本题的关键.