【拉格朗日中值定理例题】拉格朗日中值定理的题(1)e^x>ex(x>1)(2)b-a>1/a-1/b(...

发布时间:2021-03-30 10:26:39

拉格朗日中值定理的题(1) e^x > ex (x>1)(2) b - a > 1/a -1/b (b>a>1)证明以上不等式 数学

网友回答

【答案】 (1) e^x > ex (x>1)
  证明:设f(x)=e^x ,则f(x)在区间[1,x]上连续,在区间(1,x)内可导,
  由拉格朗日中值定理,存在c∈(1,x),使f(x) - f(1)=f '(c)(x -1),即e^x -e=e^c(x -1) ,
  因为c>1,所以e^x -e=e^c(x -1)>e(x -1),即e^x >ex.证毕.
  (2) b - a > 1/a -1/b (b>a>1)
  证明:设f(x)=1/x ,则f(x)在区间[a,b]上连续,在区间(a,b)内可导,
  由拉格朗日中值定理,存在c∈(a,b),使f(b) - f(a)=f '(c)(b -a),即1/b -1/a = -c^(-2)(b -a),
  因为c>a>1,所以1/b -1/a = -c^(-2)(b -a)1/a -1/b中右边通分得1/a -1/b=(b - a)/ab
  所以不等式(2)即 1>1/ab,即 ab>1,显然成立.
以上问题属网友观点,不代表本站立场,仅供参考!