如图,平行四边形ABCD的面积是16,对角线AC、BD相交于点O,点M1、N1、P1分别为线段OD、DC、CO的中点,顺次连接M1N1、N1?P1、P1M1得到第一个

发布时间:2020-08-12 03:56:46

如图,平行四边形ABCD的面积是16,对角线AC、BD相交于点O,点M1、N1、P1分别为线段OD、DC、CO的中点,顺次连接M1N1、N1?P1、P1M1得到第一个△P1M1N1,面积为S1,分别取M1N1、N1P1、P1M1三边的中点P2、M2、N2,得到第二个△P2M2N2,面积记为S2,如此继续下去得到第n个△PnMnNn,面积记为Sn,则Sn-Sn-1=________.(用含n的代数式表示,n≥2,n为整数)

网友回答

-
解析分析:因为平行四边形ABCD被对角线所分的四个小三角形面积相等(等底同高证得),故S△OCD=4.又M1、N1、P1分别为各边中点,故将△OCD分为四个面积相等的三角形,S△M1N1P1=4×=1,依次往下,M2、N2、P2又将△M1N1P1的面积分为相等四分,故S2的面积可求,依此类推即可求出Sn和Sn-1的值,问题得解.

解答:∵平行四边形ABCD被对角线所分的四个小三角形面积相等,
∴S△OCD=16×=4,
∵M1、N1、P1分别为各边中点,故将△OCD分为四个面积相等的三角形,
∴S△M1N1P1=4×=1,依次往下,M2、N2、P2又将△M1N1P1的面积分为相等四分,故S2=S△M2N2P2=S△M1N1P1=4××=4×,
依此类推…
∴Sn=4×,
∴Sn-1=4×,
∴Sn-Sn-1=4×-4×=-.
以上问题属网友观点,不代表本站立场,仅供参考!