某商店销售一种进价为20元/双的手套,经调查发现,该种手套每天的销售量w(双)与销售单价x(元)满足w=-2x+80(20≤x≤40),设销售这种手套每天的利润为y(元).
(1)求y与x之间的函数关系式;
(2)当销售单价定为多少元时,每天的利润最大?最大利润是多少?
网友回答
解:(1)y=w(x-20)
=(-2x+80)(x-20)
=-2x2+120x-1600;
(2)y=-2(x-30)2+200.
∵20≤x≤40,a=-2<0,
∴当x=30时,y最大值=200.
答:当销售单价定为每双30元时,每天的利润最大,最大利润为200元.
解析分析:(1)用每双手套的利润乘以销售量得到每天的利润;
(2)由(1)得到的是一个二次函数,利用二次函数的性质,可以求出最大利润以及销售单价.
点评:本题考查的是二次函数的应用,(1)根据题意得到二次函数.(2)利用二次函数的性质求出最大值.(3)由二次函数的值求出x的值.