如图,已知Rt△ABC≌Rt△CDE,∠B=∠D=90°,且B,C,D三点共线.试说明∠ACE=90°.
网友回答
证明:∵Rt△ABC≌Rt△CDE,
∴∠BCA=∠CED,
∵△DCE是直角三角形,
∴∠CED+∠ECD=90°,
∴∠BCA+∠ECD=90°,
∴∠ACE=180°-90°=90°.
解析分析:根据Rt△ABC≌Rt△CDE可得∠BCA=∠CED,再根据直角三角形两锐角互余可得∠CED+∠ECD=90°,进而得到∠BCA+∠ECD=90°,再根据角之间的关系可得∠ACE=90°.
点评:此题主要考查了全等三角形的性质,关键是掌握全等三角形对应角相等,直角三角形两锐角互余.