1/1×3+1/3×5+1/5×7+…………+1/49×51和1/2×4+1/4×6+1/6×8+…

发布时间:2021-03-16 11:30:02

1/1×3+1/3×5+1/5×7+…………+1/49×51和1/2×4+1/4×6+1/6×8+…………1/48×50接着 还有1/1+2 + 1/1+2+3 +……+ 1/1+2+3+……+100我明天上课用

网友回答

1/1×3+1/3×5+1/5×7+…………+1/49×51
=(1-1/3+1/3-1/5+1/5-1/7+……+1/49-1/51)÷2
=(1-1/51)÷2
=50/51÷2
=25/51
1/2×4+1/4×6+1/6×8+…………1/48×50
=(1/2-1/4+1/4-1/6+1/6-1/8+……+1/49-1/50)÷2
=(1/2-1/50)÷2
=12/25÷2
=6/251/1+2 + 1/1+2+3 +……+ 1/1+2+3+……+100
=2*【1/2+1/2*(1+2)+1/2*(1+2++3)+……+1/2*(1+2+3+……+100)】
=2*【1-1/2+1/2-1/3+1/3-1/4+……+1/100-1/101】
=2*【1-1/101】
=2*100/101
=200/101
======以下答案可供参考======
供参考答案1:
这题考的是2/(n)(n+2)的变形
2/(n)(n+2)=1/n -1/(n+2)
即原式=1/2(1-1/3+1/3-1/5+1/5-1/7+……-1/51)=25/51
下一题同理供参考答案2:
1/1×3+1/3×5+1/5×7+…………+1/49×51
=1/2×(1-1/3)+1/2×(1/3-1/5)+........+1/2×(1/49-1/51)
=1/2×(1-1/3+1/3-1/5+.......+1/49-1/51)
=1/2×(1-1/51)=25/51
1/2×4+1/4×6+1/6×8+…………1/48×50
自己解1/1+2 + 1/1+2+3 +……+ 1/1+2+3+……+100
=2/2×3+2/3×4+......+2/100×101
以下自己解供参考答案3:
1.原式=1/2(1-1/3+1/3-1/5+1/5-1/7+……+1/48-1/50)=1/2(1-1/50)=49/100
2.原式=2/6+2/12+2/20+……+2/n(n+1)=2(1/2-1/3+1/3-1/4+1/4-1/5+……+1/n-1/n+1)
=2(1-1/n+1)=2n/(n+1)
以上问题属网友观点,不代表本站立场,仅供参考!