如图:已知△ABC中,AD⊥BC于D,AE为∠BAC的平分线,且∠B=35°,∠C=65°,求∠DAE的度数.

发布时间:2020-08-06 21:37:07

如图:已知△ABC中,AD⊥BC于D,AE为∠BAC的平分线,且∠B=35°,∠C=65°,求∠DAE的度数.

网友回答

解:∵∠B=35°,∠C=65°,
∴∠BAC=180°-∠B-∠C=180°-35°-65°=80°.
∵AE为∠BAC的平分线,
∴∠EAC=∠BAC=×80°=40°.
∵AD⊥BC,
∴∠ADC=90°,
在△ADC中,∠DAC=180°-∠ADC-∠C=180°-90°-65°=25°,
∴∠DAE=∠EAC-∠DAC=40°-25°=15°.
解析分析:首先根据三角形的内角和定理和角平分线的定义求出∠EAC的度数,再根据三角形的内角和定理求出∠DAC的度数,进而求∠DAE的度数.

点评:本题考查了三角形的内角和定理、角平分线的定义、垂直的定义等知识.
以上问题属网友观点,不代表本站立场,仅供参考!