【估计量】在数理统计中如何证明估计量是有效估计?一般有效估计都是谁比谁够...

发布时间:2021-03-25 17:20:19

在数理统计中如何证明估计量是有效估计?一般有效估计都是谁比谁够有效,但这几天遇到这样的问题如题:总体X~N(μ,1),X1、X2、X3……Xn为其样本,在求得μ的极大似然估计量后,如何证明估计量是其有效估计? 数学

网友回答

【答案】 估计量的一个无偏估计是克拉默—拉奥不等式中等式:
  无偏估计的方差=1/(n*信息量)
  成立,就称该无偏估计为估计量的一个有效估计 追问: 这个“信息量”怎么讲? 另外,可不可以认为对于n~∞,无偏估计的方差的极限为0,就认为无偏估计是有效估计? 追答: 不能那么认为,我写的这个是定义,信息量这上面不好写出来,你可以参考一下《概率论语数理统计教程》魏宗舒版的,高等教育出版社。285页
以上问题属网友观点,不代表本站立场,仅供参考!