如上
网友回答
⊙B:x^2+2mx+y^2=8m^2,即⊙B:(x+m)^2+y^2=(3m)^2
设过A(m,0)且与⊙B:(x+m)^2+y^2=(3m)^2内切的圆圆心为M(a,b)
则⊙M半径为3m-√[(a-m)^2+b^2]
故⊙M:(x-a)^2+(y-b)^2={3m-√[(a-m)^2+b^2]}^2
又点A(m,0)在⊙M上,即(m-a)^2+(0-b)^2={3m-√[(a-m)^2+b^2]}^2
化简有:(a-m)^2+b^2=9m/4
则所求圆心轨迹为:(x-m)^2+y^2=9m/4