过点A(m,0)(m>0)且与圆x²+2my+y²=8m²内切的圆的圆心的轨迹方程是

发布时间:2020-07-28 03:53:47

如上

网友回答

⊙B:x^2+2mx+y^2=8m^2,即⊙B:(x+m)^2+y^2=(3m)^2
设过A(m,0)且与⊙B:(x+m)^2+y^2=(3m)^2内切的圆圆心为M(a,b)
则⊙M半径为3m-√[(a-m)^2+b^2]
故⊙M:(x-a)^2+(y-b)^2={3m-√[(a-m)^2+b^2]}^2
又点A(m,0)在⊙M上,即(m-a)^2+(0-b)^2={3m-√[(a-m)^2+b^2]}^2
化简有:(a-m)^2+b^2=9m/4
则所求圆心轨迹为:(x-m)^2+y^2=9m/4
以上问题属网友观点,不代表本站立场,仅供参考!