在三角形ABC中,内角A,B,C的对边分别是a,b,c,且a2+b2+根号2ab=c2.(1)求角C(2)设COSACOSB=3根号2/5,(COS(α+A)COS(α+B))/COS2α=根号2/5,求TANα的值.
在三角形ABC中,内角A,B,C的对边分别是a,b,c,且a2+b2+根号2ab=c2.
(1)求角C(2)设COSACOSB=3根号2/5,(COS(α+A)COS(α+B))/COS2α=根号2/5,求TANα的值.
网友回答
a2+b2+根号2ab=c2?
是不是a2+b2+(√2)ab=c2吧?
解1:
由余弦定理,有:c2=a2+b2-2abcosC
已知:a2+b2+(√2)ab=c2
因此有:a2+b2-2abcosC=a2+b2+(√2)ab
即:cosC=-(√2)/2
因为:C是三角形内角,
所以:C=135°.
解2:
由解1有:C=135°,又知:C=180°-(A+B)
所以:sinC=(√2)/2,即:sin[180°-(A+B)]=(√2)/2
sin(A+B)=(√2)/2……………………………………(1)
另得:cosC=-(√2)/2,即:cos[180°-(A+B)]=-(√2)/2
cos(A+B)]=(√2)/2……………………………………(2)
由(2),有:cosAcosB-sinAsinB=(√2)/2
已知:cosAcosB=(3√2)/5…………………………(3)
有:(3√2)/5-sinAsinB=(√2)/2
得:sinAsinB=(√2)/10………………………………(4)
又已知:[cos(α+A)cos(α+B)]/cos2α=(√2)/5
(cosαcosA-sinαsinA)(cosαcosB-sinαsinB)/cos2α=(√2)/5
cos2αcosAcosB+sin2αsinAsinB-sinαcosαsinAcosB-sinαcosαcosAsinB=(√2)/5
将(3)、(4)代入,有:
cos2α(3√2)/5+sin2α(√2)/10-sinαcosα(sinAcosB+cosAsinB)=(√2)/5
cos2α(3√2)/5+sin2α(√2)/10-sinαcosαsin(A+B)=(√2)/5
将(1)代入,有:
cos2α(3√2)/5+sin2α(√2)/10-sinαcosα(√2)/2=(√2)/5
6cos2α+sin2α-5sinαcosα=2
5cos2α+(cos2α+sin2α)-5sinαcosα=2
cos2α-sinαcosα=1/5
cos2α(1-tanα)=1/5………………(5)
又:
tanα=sinα/cosα……………………(6)
cos2α+sin2α=1……………………(7)
由(6)得:sin2α=tan2αcos2α
将(7)代入上式,有:
1-cos2α=tan2αcos2α
(tan2α+1)cos2α=1
cos2α=1/(tan2α+1)
代入(5),有:
(1-tanα)/(tan2α+1)=1/5
5-5tanα=tan2α+1
tan2α+5tanα-4=0
有:tanα=(-5±√41)/2
即:tan(α1)=(-5+√41)/2、tan(α2)=-(5+√41)/2