如图,已知:⊙O1、⊙O2外切于点P,A是⊙O1上一点,直线AC切⊙O2于点C交⊙O1于点B,直线AP交⊙O2于点D.(1)求证:PC平分∠BPD;(2)将“⊙O1、

发布时间:2020-08-05 04:36:02

如图,已知:⊙O1、⊙O2外切于点P,A是⊙O1上一点,直线AC切⊙O2于点C交⊙O1于点B,直线AP交⊙O2于点D.
(1)求证:PC平分∠BPD;
(2)将“⊙O1、⊙O2外切于点P”改为“⊙O1、⊙O2内切于点P”,其它条件不变.(1)中的结论是否仍然成立?画出图形并证明你的结论.

网友回答

证明:(1)如图1,过点P作两圆的公切线MP,交AC于点M.
则∠BPM=∠A,∠MPC=∠C.
∴∠BPC=∠BPM+∠MPC=∠A+∠C=∠CPD,
∴PC平分∠BPD;


(2)如图2,过点P作两圆的公切线PM,
则∠MPB=∠A,∠MPC=∠BCP=∠PDC;
∴∠BPC=∠MPC-∠MPB=∠BCP-∠A=∠CPA,
∴PC平分∠BPD.
解析分析:(1)欲证PC平分∠BPD,即证∠BPC=∠CPD,可以过点P作两圆的公切线PM交AC于点M,根据切线的性质得出∠BPM=∠A,∠MPC=∠C,再通过角与角相互间的关系得出;
(2)同(1),只是∠BPC=∠MPC-∠MPB=∠BCP-∠A=∠CPA.

点评:本题综合考查了圆与圆的位置关系中角平分线的判断,同时考查了切线的性质.
以上问题属网友观点,不代表本站立场,仅供参考!