如图,在Rt△ABC中,∠BAC=90°,D是BC上一点,且∠BAD=2∠C.求证:∠ABD=∠ADB.

发布时间:2020-08-05 02:08:34

如图,在Rt△ABC中,∠BAC=90°,D是BC上一点,且∠BAD=2∠C.
求证:∠ABD=∠ADB.

网友回答

证明:∵在Rt△ABC中,∠BAC=90°,
∴B+∠C=90°(直角三角形的两个锐角互余);
又∠BAD=2∠C(已知),
∴∠BAD+∠DAC=2∠C+∠DAC=∠B+∠C,即∠B=∠C+∠DAC,
∵∠ADB=∠C+∠DAC(三角形外角性质),
∴∠ABD=∠ADB(等量代换).

解析分析:根据直角三角形的两个锐角互余的性质推知B+∠C=90°;然后由已知条件∠BAD=2∠C求得∠BAD+∠DAC=2∠C+∠DAC=∠B+∠C,即∠B=∠C+∠DAC;最后根据△ADC的外角性质以及等量代换证得
∠ABD=∠ADB.

点评:本题考查了三角形外角性质、直角三角形的性质.直角三角形的两个锐角互余.
以上问题属网友观点,不代表本站立场,仅供参考!