已知f(x)是定义在R上单调函数,对任意实数m,n有:f(m+n)=f(m)?f(n);且x>0时,0<f(x)<1.(1)证明:f(0)=1;(2)证明:当x<0时

发布时间:2020-08-12 12:18:35

已知f(x)是定义在R上单调函数,对任意实数m,n有:f(m+n)=f(m)?f(n);且x>0时,0<f(x)<1.
(1)证明:f(0)=1;
(2)证明:当x<0时,f(x)>1;
(3)当时,求使对任意实数x恒成立的参数a的取值范围.

网友回答

证明:(1)在f(m+n)=f(m)?f(n)中,
取m>0,n=0,
有f(m)=f(m)?f(0),
∵x>0时,0<f(x)<1,
∴f(0)=1                                               …
(2)设m=x<0,n=-x>0,
则0<f(-x)<1,
∴f(m+n)=f(0)=f(x)?f(-x)=1
∴f(x)=>1,
即x<0时,f(x)>1                                         …
解:(3)∵f(x)是定义在R上单调函数,
又f(0)=1>
∴f(x)是定义域R上的单调递减函数                                                 …
,且由已知f(2)>0,
∴f(2)=                                …
∴原不等式变为,
即f(x2-2x+a-1)≤f(2)…
∴f(x)是定义域R上的单调递减函数可得,
x2-2x+a-1≥2对任意实数x恒成立
即x2-2x+a-3≥0对任意实数x恒成立
∴△=4-4(a-3)≤0,
∴a≥4                                                    …
解析分析:(1)令m>0,n=0,结合f(m+n)=f(m)?f(n),可证得f(0)=1;
(2)由f(m+n)=f(m)?f(n);且x>0时,0<f(x)<1,令m=x<0,n=-x>0,结合(1)中f(0)=1,可证得当x<0时,f(x)>1;
(3)根据函数的单调性及(2)中结论,可将抽象不等式具体化,进而根据二次不等式恒成立问题,求出参数a的取值范围.


点评:本题考查的知识点是函数恒成立问题,抽象函数及其应用,难度稍大,是中档题.
以上问题属网友观点,不代表本站立场,仅供参考!