当x=6,y=8时,x6+y6+2x4y2+2x2y2的值是A.1200000-254000B.1020000-250400C.1200000-250400D.1020000-254000
网友回答
B解析因为x6+y6+2x4y2+2x2y4=(x2+y2)(x4+x2y2+y4)=(x2+y2)〔(x2+y2)2-(xy)2〕,由x=6,y=8,得x2十y2=100,xy=48,代入原式,得到100×(1002-482)=100(10000-2304)=1020000-250400.所以应选B.
注:用x2+y2=100,xy=48代入原式,得到100〔1002-(50-2)2]=100〔1002+2×2×50-(502+22)〕=100(10200-2504)=1020000-250400,故选B.