如图,AP表示发动机的连杆,OA表示它的曲柄.当A在圆上作圆周运动时,P在x轴上作直线运动,求P点的横坐标.为什么当α是直角时,∠P是最大?
网友回答
解:过A作AB⊥OP
设x为点P的横坐标,则
x=OP=OB+BP=
因为∠P随连杆位置的变化而改变,
但连杆上下摆动的幅度是一样的,
所以∠P的最大值是一样的.
故可以考虑0≤α≤π内∠P变化的情况,
由正弦定理得
在0≤α≤π内,
当时,sinα的值最大,
因而sin∠P的值也最大
∵OA<AP,
∴∠P<α,即∠P总是锐角.
在内,
sin∠P是单调上升的,
所以时,∠P最大.
解析分析:过A作AB⊥OP,设x为点P的横坐标,根据OP=OB+BP表示出x的表达式,根据虽然∠P随连杆位置的变化而改变但连杆上下摆动的幅度是一样,可得到∠P的最大值是一样,即只需0≤α≤π内∠P变化的情况,根据正弦定理可知,因为当时sinα的值最大,进而可得到sin∠P的值也最大,再由正弦函数的性质可知此时P最大.
点评:本题主要考查正弦定理和正弦函数的性质的应用.三角函数的内容比较散,公式比较多,不容易记忆,一定要在平时多积累多练习到考试时方能够做到灵活运用.