P是⊙O外一点,PA、PB分别与⊙O相切于点A、B,点C是劣弧AB上任意一点,经过点C作⊙O的切线,分别交PA、PB于点D、E.若PA=4,则△PDE的周长是A.4B.8C.12D.不能确定
网友回答
B
解析分析:根据题意画出图形,由PA和PB为圆的切线,根据切线长定理得到PA与PB相等,同理得到DA与DC相等,EC与EB相等,然后表示出三角形PDE的三边和,等量代换后即可求出三角形PDE的周长.
解答:解:根据题意画出图形,如图所示,由直线DA和直线DC为圆O的切线,得到AD=DC,同理,由直线EC和直线EB为圆O的切线,得到EC=EB,又直线PA和直线PB为圆O的切线,所以PA=PB=4,则△PDE的周长C=PD+DE+PE=PD+DC+EC+PE=PD+DA+EB+PE=PA+PB=4+4=8.故选B
点评:此题考查学生掌握切线长定理,即经过圆外一点作圆的两条切线,切线长相等且此点与圆心的连线平分两切线的夹角,考查了数形结合的数学思想,是一道中档题.理解过点D和点E分别作圆的两条切线是解本题的关键.