(1)如图,在?ABCD中,对角线AC、BD相交于点O.请找出图中的一对全等三角形,并给予证明;
(2)规定:一条弧所对的圆心角的度数作为这条弧的度数.
①如图,在⊙O中,弦AC、BD相交于点P,已知弧AB、弧CD分别为65°和45°,求∠APB;
②一般地,在⊙O中,弦AC、BD相交于点P,若弧AB、弧CD分别为m°和n°,求∠APB.
(用m、n的代数式表示)
网友回答
解:(1)△AOB≌△COD.
∵四边形ABCD为平行四边形,
∴AO=CO,OB=OD.
∵∠AOB=∠COD,
∴△AOB≌△COD(SAS).
(2)①如图:连接AD,
∵弧AB、弧CD分别为65°和45°,
∴∠ADB=65°÷2=32.5°,
∠CAD=45°÷2=22.5°,
∴∠APB=32.5°+22.5°=55°.
②同理得∠APB=(m°+n°).
解析分析:根据平行四边形的性质再利用SAS判定△AOB≌△COD,利用圆心角、弧、弦的关系来解答第二问.
点评:此题考查了全等三角形的判定方法及圆心角弧,弦的关系等知识点.