如图所示,已知在?ABCD中,各个内角的平分线相交于点E、F、G、H.(1)猜想EG与FH之间的关系;(2)试说明你猜想的正确性.

发布时间:2020-08-11 04:36:29

如图所示,已知在?ABCD中,各个内角的平分线相交于点E、F、G、H.
(1)猜想EG与FH之间的关系;(2)试说明你猜想的正确性.

网友回答

解:(1)EG=FH.

(2)证明:∵四边形ABCD是平行四边形,
∴AD∥BC,
∴∠BAD+∠ABC=180°.
又∵AF,BH分别平分∠BAD,∠ABC,
∴∠DAE=∠AEB=∠DAB,
∴∠BAE+∠ABE=90°,
∴∠AEB=90°,
∴∠FEH=90°.
同理可证∠EFG=90°,∠EHG=90°,
∴四边形EFGH为矩形,
∴EG=FH.
解析分析:因为平行四边形的邻角互补,则邻角的平分线组成的角为90°,有三个角是90°的四边形是矩形,故EG=FH.


点评:此题主要考查平行四边形的性质和矩形的判定.
以上问题属网友观点,不代表本站立场,仅供参考!