如图,已知在△ABC中,AB=AC,BC在直线MN上.
(1)根据下列要求补完整图形,
①画出△ABC关于直线MN对称的三角形A′BC;
②在线段BC上取两点D、E(,),使BD=CE,连接AD、AE、A′D、A′E;
(2)求证:四边形ADA′E是菱形.
网友回答
解:(1)所画图形如下所示:
(2)说明:连接AA′,交MN于O,
∵MN是对称轴,
∴MN垂直平分AA′
又∵AB=AC
∴AA′垂直平分BC,
又∵BD=CE
∴DO=EO.
即 AA′垂直平分DE,
∴AA′与DE互相垂直平分,
∴四边形ADA′E是菱形.
解析分析:(1)利用轴对称性质,作出△ABC的各个顶点关于直线MN的对称点,顺次连接,即得到关于直线MN轴对称的对应图形.
(2)要想证明四边形ADA′E是菱形,只需证明其对角线AA′与DE互相垂直平分即可.
点评:本题考查了轴对称变换中的作图问题以及菱形的判断,有一定难度,平时注意总结菱形判断的方法,以便灵活应用.