已知:△ABC是⊙O的内接正三角形,P为弧BC上一点(与点B、C不重合),(1)如果点P是弧BC的中点,求证:PB+PC=PA;(2)如果点P在弧BC上移动时,(1)

发布时间:2020-08-09 12:55:44

已知:△ABC是⊙O的内接正三角形,P为弧BC上一点(与点B、C不重合),
(1)如果点P是弧BC的中点,求证:PB+PC=PA;
(2)如果点P在弧BC上移动时,(1)的结论还成立吗?请说明理由.

网友回答

解:(1)连OB,OC,如图
∵点P是弧BC的中点,△ABC是⊙O的内接正三角形,
∴AP为⊙O的直径,
∴∠BPO=∠ACB,∠APC=∠ABC,
∵△ABC是⊙O的内接正三角形,
∴∠ACB=∠ABC=60°,
∴∠BPO=∠APC=60°,
∴△OBP和△OPC都是等边三角形,
∴PB=PC=OP=OA,
∴PB+PC=PA;

(2)(1)的结论还成立.理由如下:
截取PE=PC,
∵∠APC=60°,
∴△PEC为等边三角形,
∴CE=CP,∠PCE=60°,
而∠ACB=60°,
∴∠ACE=∠BCP,
而CA=CB,
∴△CAE≌△CBP,
∴AE=PB,
∴PB+PC=PA.
解析分析:(1)连OB,OC,由点P是弧BC的中点,△ABC是⊙O的内接正三角形,根据垂径定理的推论得到AP为⊙O的直径,易得△OBP和△OPC都是等边三角形,于是得到结论;
(2)截取PE=PC,则△PEC为等边三角形,得到CE=CP,∠PCE=60°,易证△CAE≌△CBP,得到AE=PB,即有PB+PC=PA.

点评:本题考查了圆周角定理:同弧所对的圆周角相等,也考查了等边三角形的性质和三角形全等的判定与性质以及证明一条线段等于两条线段和的方法.
以上问题属网友观点,不代表本站立场,仅供参考!