定义在R上的偶函数f(x)满足:对任意的x1,x2∈(-∞,0](x1≠x2),

发布时间:2020-07-27 17:06:36

定义在R上的偶函数f(x)满足:对任意的x1,x2∈(-∞,0](x1≠x2),有(x2-x1)(f(x2)-f(x1))>0.则当n∈N*时,有A.f(-n)<f(n-1)<f(n+1)B.f(n-1)<f(-n)<f(n+1)C.f(n+1)<f(-n)<f(n-1)D.f(n+1)<f(n-1)<f(-n)

网友回答

C解析分析:由“x1,x2∈(-∞,0](x1≠x2),有(x2-x1)(f(x2)-f(x1))>0”可等有“x2>x1时,f(x2)>f(x1)”,符合增函数的定义,所以f(x)在(-∞,0]为增函数,再由f(x)为偶函数,则知f(x)在(0,+∞)为减函数,由n+1>n>n-1>0,可得结论.解答:x1,x2∈(-∞,0](x1≠x2),有(x2-x1)(f(x2)-f(x1))>0∴x2>x1时,f(x2)>f(x1)∴f(x)在(-∞,0]为增函数∵f(x)为偶函数∴f(x)在(0,+∞)为减函数而n+1>n>n-1>0,∴f(n+1)<f(n)<f(n-1)∴f(n+1)<f(-n)<f(n-1)故选C.点评:本题主要考查单调性定义的变形与应用,还考查了奇偶性在对称区间上的单调性,结论是:偶函数在对称区间上的单调相反,奇函数在对称区间上的单调性相同.
以上问题属网友观点,不代表本站立场,仅供参考!