已知:如图,A是半径为2的⊙O上的一点,P是OA延长线上的一动点,过P作⊙O的切线,切点为B,设PA=m,PB=n.
(1)当n=4时,求m的值;
(2)⊙O上是否存在点C,使△PBC为等边三角形?若存在,请求出此时m的值;若不存在,请说明理由;
(3)当m为何值时,⊙O上存在唯一点M和PB构成以PB为底的等腰三角形?并直接答出:此时⊙O上能与PB构成等腰三角形的点共有几个?
网友回答
解:(1)解法一:连接OB.
∵PB切⊙O于B,
∴∠OBP=90°,
∴PO2=PB2+OB2,
∵PO=2+m,PB=n,OB=2,
∴(2+m)2=n2+22m2+4m=n2;
n=4时,解,得:
(舍去),.
∴m的值为.
解法二:延长PO交⊙O于Q,PAQ为⊙O割线.
又∵PB切⊙O于B,
∴PB2=PA?PQ,
∵PB=n,PA=m,PO=m+4,
∴n2=m2+4m,
当n=4时,解得(舍去),,
∴m的值为.
(2)存在点C,使△PBC为等边三角形;
当∠OPB=30°时,过点P作⊙O的另一条切线PC,C为切点,
∴PB=PC,∠OPB=∠OPC,
∴∠BPC=60°,∴△PBC为等边三角形;
连接OB,∠OBP=90°,OB=2,得OP=4,
∴m=PA=OP-OA=2.
(3)如图,设EF为线段PB的垂直平分线,垂足为D,当EF与⊙O相切于点M时,M符合要求;
连接OB、OM,易得四边形OMDB为正方形,
∴BD=DM=OM=2,
∴n=PB=4.
由(1)得n=4时,m=,
∴当m=时,⊙O上存在唯一点M和PB构成以PB为底的等腰三角形,
此时⊙O上共有3个点能与PB构成等腰三角形.
(这3点分别是M,M1,M2.其中M是PB中垂线与⊙O的切点,M1是延长BO与⊙O的交点,M2是点B关于OP的对称点)
解析分析:(1)此题可有两种解法:①连接OB,利用勾股定理求解,②延长PO交⊙O于另外一点,利用切割线定理求解;
(2)若△PBC是等边三角形,则必有PB=PC,由于PB是⊙O的切线,且C在⊙O上,那么若存在符合条件的C点,则PC必与⊙O相切,且切点为C(切线长定理).若△PBC是等边三角形,则∠BPC=60°,∠BPO=30°,可连接OB,在Rt△OBP中,通过解直角三角形即可求得AP的长即m的值;
(3)若存在等腰△PBM,且以PB为底,那么M点必在线段PB的垂直平分线上,而⊙O上存在唯一点M,那么线段PB的中垂线与⊙O相切,且切点为M.连接OM,易证得四边形OBDM是正方形,则BP=2BD=2OB=4,即n=4,在Rt△OBP中,利用勾股定理即可求得OP的长,进而可得到AP即m的值.
在上面已经求得PB=4,若M能与PB构成等腰三角形(PB不一定是底边),可有两种情况考虑:
①BM=PB=4,由于⊙O的半径为2,那么过B作⊙O的直径BM,此时M点就符合题意;
②PB=PM=4,此种情况与(2)题相同,此时M、C重合,即PM与⊙O相切,且切点为M.
由于BM=PM在上面已经讨论过,所以能与PB构成等腰三角形的共有3点.
点评:此题考查了勾股定理、切割线定理、切线长定理、等腰三角形和等边三角形的判定、切线的性质等重要知识点,综合性强,难度较大.