已知圆O的方程为x^2+y^2=9,求过点A(1,2)的圆的弦的中点P的轨迹x+2y-5=0利用点差法即可得到点p的轨迹方程.有两种做法,所以我感到有点纠结,一种方法说这个答案不对,点差法 设中点是(x0,y0) 圆上的两点为(x1,y1) (x2,y2) 那么有x1+x2=2x0 y1+y2=2y0 x1^2+y1^2=9 x2^2+y2^2=9 两式相减得到(y1-y2)/
网友回答
答案提示:利用点差法即可得到点p的轨迹方程.
有两种做法,所以我感到有点纠结,一种方法说这个答案不对,
过程如下:点差法 设中点是(x0,y0) 圆上的两点为(x1,y1) (x2,y2)
那么有x1+x2=2x0 y1+y2=2y0 x1^2+y1^2=9 x2^2+y2^2=9
两式相减得到(x1-x2)(x1+x2)+(y1-y2)(y1+y2)=0
x1+x2=2 y1+y2=4 kAB=(y1-y2)/(x1-x2) 代入
2(x1+x2)+4(y1-y2)=0 两边同时除以(x1-x2)
2+4k=0
k=-1/2
代入点斜式 得x+2y-5=0
点差法比较好