已知函数f(x)=loga,(a>0,且a≠1).(1)求函数的定义域,并证明:f(x)=loga在定义域上是奇函数;(2)对于x∈[2,4],f(x)=loga>l

发布时间:2020-08-16 02:21:14

已知函数f(x)=loga,(a>0,且a≠1).
(1)求函数的定义域,并证明:f(x)=loga在定义域上是奇函数;
(2)对于x∈[2,4],f(x)=loga>loga恒成立,求m的取值范围.

网友回答

解 (1)由>0,解得x<-1或x>1,
∴函数的定义域为(-∞,-1)∪(1,+∞).
当x∈(-∞,-1)∪(1,+∞)时,f(-x)=loga=loga=-loga=-f(x),
∴f(x)=loga在定义域上是奇函数.
(2)由x∈[2,4]时,f(x)=loga>loga恒成立,
①当a>1时,
∴>对x∈[2,4]恒成立.
∴0<m<(x+1)(x-1)(7-x)在x∈[2,4]恒成立.
设g(x)=(x+1)(x-1)(7-x),x∈[2,4]
则g(x)=-x3+7x2+x-7,
g′(x)=-3x2+14x+1,
∴当x∈[2,4]时,g′(x)>0.
∴y=g(x)在区间[2,4]上是增函数,g(x)min=g(2)=15.
∴0<m<15.
②当0<a<1时,由x∈[2,4]时,
f(x)=loga>loga恒成立
∴<loga对x∈[2,4]恒成立.
∴m>(x+1)(x-1)(7-x)在x∈[2,4]恒成立.
设g(x)=(x+1)(x-1)(7-x),x∈[2,4],
由①可知y=g(x)在区间[2,4]上是增函数,
g(x)max=g(4)=45,∴m>45.
∴m的取值范围是(0,15)∪(45,+∞).
解析分析:(1)由>0解得定义域,在定义域范围内考察f(-x)=-f(x)成立.
(2)根据对数的性质,转化为真数大小关系恒成立,再利用分离参数法求m范围.

点评:本题考查了函数奇偶性的判定,不等式恒成立问题,函数最值求解,考查运算求解能力.
以上问题属网友观点,不代表本站立场,仅供参考!