【特征方程怎么求】微分方程的特征方程怎么求的?

发布时间:2021-03-30 06:12:24

微分方程的特征方程怎么求的? 数学

网友回答

【答案】 例如二阶常系数齐次线性方程的形式为:y''+py'+qy=0其中p,q为常数,其特征方程为 λ^2+pλ+q=0依据判别式的符号,其通解有三种形式:\x0d1、△=p^2-4q0,特征方程有两个相异实根λ1,λ2,通解的形式为y(x)=C1*[e^(λ1*x)]+C2*[e^(λ2*x)];\x0d2、△=p^2-4q=0,特征方程有重根,即λ1=λ2,通解为y(x)=(C1+C2*x)*[e^(λ1*x)];\x0d3、△=p^2-4q<0,特征方程具有共轭复根α+-(i*β),通解为y(x)=[e^(α*x)]*(C1*cosβx+C2*sinβx).
以上问题属网友观点,不代表本站立场,仅供参考!