sin2A-sin2B=2sin(A-B)cos(A+B)是怎么出来的

发布时间:2021-03-16 07:59:47

sin2A-sin2B=2sin(A-B)cos(A+B)是怎么出来的

网友回答

2A=(A+B)+(A-B),则:
sin2A=sin[(A+B)+(A-B)]=sin(A+B)cos(A-B)+cos(A+B)sin(A-B) ------------(1)
2B=(A+B)-(A-B),则:
sin2B=sin[(A+B)-(A-B)]=sin(A+B)cos(A-B)-cos(A+B)sin(A-B) ------------(2)
(1)+(2),得:
sin2A+sin2B=2sin(A+B)cos(A-B)
======以下答案可供参考======
供参考答案1:
sin2A-sin2B=2sinAcosA-2sinBcosB=2(sinAcosA-sinBcosB)
=2[sinAcosA(sin^2B+cos^2B)-sinBcosB(sin^2A+cos^2A)]
=2[(sinAcosB-sinBcosA)cosAcosB-(sinAcosB-sinBcosA)sinAsinB]
=2(sinAcosB-sinBcosA)(cosAcosB-sinAsinB)
=2sin(A-B)cos(A+B)
供参考答案2:
=sinAcosA+cosA*sinA-(sinB*cosB+cosB*sinB)
=2sinAcosA-2sinB*cosB
=2(sinAcosA-sinBcosB)
=2sin(A-B)cos(A+B)
以上问题属网友观点,不代表本站立场,仅供参考!