将一幅三角板拼成如图所示的图形,过点C作CF平分∠DCE交DE于点F.
(1)求证:CF∥AB.
(2)求∠DFC的度数.
网友回答
(1)证明:∵CF平分∠DCE,
∴∠1=∠2=∠DCE,
∵∠DCE=90°,
∴∠1=45°,
∵∠3=45°,
∴∠1=∠3,
∴AB∥CF;
(2)∵∠D=30°,∠1=45°,
∴∠DFC=180°-30°-45°=105°.
解析分析:(1)首先根据角平分线的性质可得∠1=45°,再有∠3=45°,再根据内错角相等两直线平行可判定出AB∥CF;
(2)利用三角形内角和定理进行计算即可.
点评:此题主要考查了平行线的判定,以及三角形内角和定理,关键是掌握内错角相等,两直线平行.