如图,AC是⊙O的直径,PA切⊙O于点A,点B是⊙O上的一点,且∠BAC=30°,∠APB=60°.(1)求证:PB是⊙O的切线;(2)若⊙O的半径为2,求弦AB及P

发布时间:2020-08-10 22:08:03

如图,AC是⊙O的直径,PA切⊙O于点A,点B是⊙O上的一点,且∠BAC=30°,∠APB=60°.
(1)求证:PB是⊙O的切线;
(2)若⊙O的半径为2,求弦AB及PA,PB的长.

网友回答

(1)证明:连接OB.
∵OA=OB,
∴∠OBA=∠BAC=30°.               
∴∠AOB=180°-30°-30°=120°.             
∵PA切⊙O于点A,
∴OA⊥PA,
∴∠OAP=90°.
∵四边形的内角和为360°,
∴∠OBP=360°-90°-60°-120°=90°.        
∴OB⊥PB.
又∵点B是⊙O上的一点,
∴PB是⊙O的切线.                           

(2)解:连接OP;
∵PA、PB是⊙O的切线,
∴PA=PB,∠OPA=∠OPB=∠APB=30°.          
在Rt△OAP中,∠OAP=90°,∠OPA=30°,
∴OP=2OA=2×2=4,
∴PA=.       
∵PA=PB,∠APB=60°,
∴PA=PB=AB=2.                            


解析分析:(1)连接OB,证PB⊥OB.根据四边形的内角和为360°,结合已知条件可得∠OBP=90°得证.
(2)连接OP,根据切线长定理得直角三角形,运用三角函数求解.


点评:此题考查了切线的判定、切线长定理、三角函数等知识点.要证某线是圆的切线,已知此线过圆上某点,连接圆心与这点(即为半径),再证垂直即可.
以上问题属网友观点,不代表本站立场,仅供参考!