△ABC和△CEF是两个大小不等的等边三角形,且有一个公共顶点C,连接AF和BE. (1)线段AF和

发布时间:2021-03-08 05:31:36

△ABC和△CEF是两个大小不等的等边三角形,且有一个公共顶点C,连接AF和BE. (1)线段AF和BE有怎样的大小

网友回答

(1)AF=BE.在△AFC和△BEC中,∵△ABC和△CEF是等边三角形,
∴AC=BC,CF=CE,∠ACF=∠BCE=60° ∴△AFC≌△BEC. ∴AF=BE.
(2)成立. 理由:在△AFC和△BEC中,∵△ABC和△CEF是等边三角形,
∴AC=BC,CF=CE,∠ACB=∠FCE=60°.∴∠ACB-∠FCB=∠FCE-∠FCB.
即∠ACF=∠BCE.∴△AFC≌△BEC.∴AF=BE.
======以下答案可供参考======
供参考答案1:
AF=BE供参考答案2:
(1)AF=BE.
证明:在△AFC和△BEC中,
∵△ABC和△CEF是等边三角形,
∴AC=BC,CF=CE,∠ACF=∠BCE=60,
∴△AFC≌△BEC.
∴AF=BE.
以上问题属网友观点,不代表本站立场,仅供参考!