【和差化积公式】数学和差化积、积化和差的公式及推导过程.

发布时间:2021-03-29 18:06:52

数学和差化积、积化和差的公式及推导过程. 数学

网友回答

【答案】 正弦、余弦的和差化积
  sin α+sinβ=2sin[(α+β)/2]·cos[(α-β)/2]
  sin α-sin β=2cos[(α+β)/2]·sin[(α-β)/2]
  cos α+cos β=2cos[(α+β)/2]·cos[(α-β)/2]
  cos α-cos β=-2sin[(α+β)/2]·sin[(α-β)/2]
    法1 sin α+sin β=2sin[(α+β)/2]·cos[(α-β)/2]的证明过程
    因为
    sin(α+β)=sin αcos β+cos αsin β,
    sin(α-β)=sin αcos β-cos αsin β,
    将以上两式的左右两边分别相加,得
    sin(α+β)+sin(α-β)=2sin αcos β,
    设 α+β=θ,α-β=φ
    那么
    α=(θ+φ)/2,β=(θ-φ)/2
    把α,β的值代入,即得
    sin θ+sin φ=2sin[(θ+φ)/2]cos[(θ-φ)/2]
    法2
    根据欧拉公式,e ^Ix=cosx+isinx
    令x=a+b
    得e ^I(a+b)=e^ia*e^ib=(cosa+isina)(cosb+isinb)=cosacosb-sinasinb+i(sinacosb+sinbcosa)=cos(a+b)+isin(a+b)
    所以cos(a+b)=cosacosb-sinasinb
    sin(a+b)=sinacosb+sinbcosa
  口诀
    正加正,正在前,余加余,余并肩
    正减正,余在前,余减余,负正弦
    反之亦然
  在百科看看吧,
  正切的和差化积
  tanα±tanβ=sin(α±β)/(cosα·cosβ)(附证明)
  cotα±cotβ=±sin(β±α)/(sinα·sinβ)
  tanα+cotβ=cos(α-β)/(cosα·sinβ)
  tanα-cotβ=-cos(α+β)/(cosα·sinβ)
  证明:左边=tanα±tanβ=sinα/cosα±sinβ/cosβ
    =(sinα·cosβ±cosα·sinβ)/(cosα·cosβ)
    =sin(α±β)/(cosα·cosβ)=右边
    ∴等式成立
以上问题属网友观点,不代表本站立场,仅供参考!