家惠商场服装部为促进营销、吸引顾客,决定试销一种成本为每件60元的服装,规定试销期间销售单价不低于成本单价,且获利不得高于45%.试销过程中发现,销售量y(件)与销售

发布时间:2020-08-08 02:06:45

家惠商场服装部为促进营销、吸引顾客,决定试销一种成本为每件60元的服装,规定试销期间销售单价不低于成本单价,且获利不得高于45%.试销过程中发现,销售量y(件)与销售单价x(元)之间存在如图所示的一次函数关系.
(1)求y关于x的函数关系式(不必写出x的取值范围);
(2)求试销期间该服装部销售该品牌服装获得利润W(元)与销售单价x(元)的函数关系式;销售单价定为多少元时,服装部可获得最大利润,最大利润是多少元?
(3)如果在试销期间该服装部想要获得500元的利润,那么销售单价应定为多少元?
(4)若在试销期间该服装部获得利润不低于500元,试确定销售单价x的范围.

网友回答

解:(1)根据题意得 ,
解得k=-1,b=120.
所求一次函数的表达式为y=-x+120.

(2)W=(x-60)?(-x+120)
=-x2+180x-7200
=-(x-90)2+900,
∵抛物线的开口向下,
∴当x<90时,W随x的增大而增大,
而销售单价不低于成本单价,且获利不得高于45%,
即x-60≤60×45%,
∴60≤x≤87,
∴当x=87时,W=-(87-90)2+900=891.
∴当销售单价定为87元时,商场可获得最大利润,最大利润是891元.

(3)如果在试销期间该服装部想要获得500元的利润,
∴500=-x2+180x-7200,
解为 x1=70,x2=110(不合题意舍去).
∴销售单价应定为70元;

(4)由W≥500,得500≤-x2+180x-7200,
而方程x2-180x+7700=0的解为 x1=70,x2=110.
即x1=70,x2=110时利润为500元,而函数y=-x2+180x-7200的开口向下,
所以要使该商场获得利润不低于500元,销售单价应在70元到110元之间,
而60元/件≤x≤87元/件,
所以,销售单价x的范围是70元/件≤x≤87元/件.
解析分析:(1)列出二元一次方程组解出k与b的值可求出一次函数的表达式.
(2)依题意求出W与x的函数表达式可推出当x=87时商场可获得最大利润.
(3)由w=500推出x2-180x+7700=0解出x的值即可.
(4)利用函数图象,分析得出x的取值范围即可.

点评:此题主要考查了二次函数的应用,利用二次函数解决实际问题是初中阶段重点题型,同学们应重点掌握.
以上问题属网友观点,不代表本站立场,仅供参考!