如图,△ABC的高CF、BG相交于点H,分别延长CF、BG与△ABC的外接圆交于D、E两点,则下列结论:①AD=AE;②AH=AE;③若DE为△ABC的外接圆的直径,则BC=AE.其中正确的是( )A.只有①B.只有①②C.只有②③D.①②③都是
网友回答
【答案】 ①∵CF、BG是△ABC的高,
∴∠AGB=∠AFC=90°,
∴∠BAC+∠ABG=90°,∠BAC+∠ACF=90°,
∴∠ABG=∠ACF,
∴
【问题解析】
①△ABC的高CF、BG相交于点H,根据同角的余角相等,即可求得∠ABG=∠ACF,即可得AD=AE;②首先延长AH交BC于M点,由H是垂心,根据同角的余角相等,即可得∠ACB=∠AHE,则可证得∠AHE=∠AEB,根据等角对等边的性质,即可得AH=AE;③由①②,易得△AHG≌△AEG,△ADF≌△AHF,又由DE为△ABC的外接圆的直径,易求得∠ADE=∠BAC=45°,则可得BC=AE. 名师点评 本题考点 圆周角定理;等腰三角形的判定与性质;圆心角、弧、弦的关系. 考点点评 此题考查了圆周角定理、全等三角形的判定与性质、直角三角形的性质等知识.此题综合性较强,难度较大,解题的关键是掌握数形结合思想的应用,注意辅助线的作法.
【本题考点】
圆周角定理;等腰三角形的判定与性质;圆心角、弧、弦的关系. 考点点评 此题考查了圆周角定理、全等三角形的判定与性质、直角三角形的性质等知识.此题综合性较强,难度较大,解题的关键是掌握数形结合思想的应用,注意辅助线的作法.