阅读材料:已知p2-p-1=0,1-q-q2=0,且pq≠1,求的值.解:由p2-p-1=0及1-q-q2=0,可知p≠0,q≠0.又∵pq≠1,∴∴1-q-q2=0

发布时间:2020-08-09 10:08:53

阅读材料:
已知p2-p-1=0,1-q-q2=0,且pq≠1,求的值.
解:由p2-p-1=0及1-q-q2=0,可知p≠0,q≠0.
又∵pq≠1,∴
∴1-q-q2=0可变形为的特征.
所以p与是方程x2-x-1=0的两个不相等的实数根.
则,∴
根据阅读材料所提供的方法,完成下面的解答.
已知:2m2-5m-1=0,,且m≠n.求:的值.

网友回答

解:解法一:由2m2-5m-1=0知m≠0,
∵m≠n,∴,
得,
根据与的特征
∴是方程x2+5x-2=0的两个不相等的实数根,
∴;
解法二:由得2n2-5n-1=0,
根据2m2-5m-1=0与2n2-5n-1=0的特征,且m≠n,
∴m与n是方程2x2-5x-1=0的两个不相等的实数根

∴.
解析分析:由题意可知:可以将方程2m2-5m-1=0化简为的形式,然后根据根与系数的关系可解得:的值;也可将方程化简为2n2-5n-1=0的形式,再根据根与系数的关系可解得:的值.

点评:本题考查是根据题目提供的信息以及根与系数的关系来解答,从而解决问题.
以上问题属网友观点,不代表本站立场,仅供参考!