函数f(x)是R上的单调函数且对任意的实数都有f(a+b)=f(a)+f(b)-1.f(4)=5,则不等式f(3m2-m-2)<3的解集为________

发布时间:2020-08-05 03:57:07

函数f(x)是R上的单调函数且对任意的实数都有f(a+b)=f(a)+f(b)-1.f(4)=5,则不等式f(3m2-m-2)<3的解集为________

网友回答


解析分析:先根据条件求出f(2),根据函数f(x)是R上的单调函数得到函数f(x)是R上的单调增函数,将3用f(2)代换,根据单调性建立不等关系,解之即可.

解答:∵对任意的实数都有f(a+b)=f(a)+f(b)-1
∴f(2+2)=f(2)+f(2)-1=5即f(2)=3
∵f(2)=3,f(4)=5,函数f(x)是R上的单调函数
∴函数f(x)是R上的单调增函数
∴f(3m2-m-2)<3=f(2)即3m2-m-2<2
解得m∈
以上问题属网友观点,不代表本站立场,仅供参考!