如图,在△ABC中,∠ACB=90°,∠A=20°.将△ABC绕点C按逆时针方向旋转角α后到△A′B′C′的位置,其中A′、B′分别是A、B的对应点,B在A′B′上,

发布时间:2020-08-05 05:16:14

如图,在△ABC中,∠ACB=90°,∠A=20°.将△ABC绕点C按逆时针方向旋转角α后到△A′B′C′的位置,其中A′、B′分别是A、B的对应点,B在A′B′上,CA′交AB于D.则∠BDC的度数为________度.

网友回答

60
解析分析:由△ABC绕点C按逆时针方向旋转角α后到△A′B′C′,根据旋转的性质得到CB=CB′,∠ACA′=∠BCB′=α,∠A=∠A′,在△A′B′C中,利用三角形的内角和定理可求得,∠B′=90°-20°=70°,于是∠BCB′=180°-70°-70°=40°,再利用三角形的外角性质得到∠BDC=∠ACA′+∠A=40°+20°=60°.

解答:∵△ABC绕点C按逆时针方向旋转角α后到△A′B′C′,
∴CB=CB′,∠ACA′=∠BCB′=α,∠A=∠A′,
又∵∠ACB=90°,∠A=20°,
∴∠A′=20°,∠B′=90°-20°=70°,
∴∠BCB′=180°-70°-70°=40°,
∴∠ACA′=40°,
∴∠BDC=∠ACA′+∠A=40°+20°=60°.
以上问题属网友观点,不代表本站立场,仅供参考!