如图,在菱形ABCD中,∠A与∠B的度数比为1:2,周长是48cm.求:(1)两条对角线的长度;(2)菱形的面积.

发布时间:2020-08-09 02:07:59

如图,在菱形ABCD中,∠A与∠B的度数比为1:2,周长是48cm.
求:(1)两条对角线的长度;
(2)菱形的面积.

网友回答

解:(1)连接BD,
∵∠A与∠B互补,即∠A+∠B=180°,∠A与∠B的度数比为1:2,
∴∠A=60°,∠B=120°.
∴∠BDA=120°×=60°.
∴△ABD是正三角形.
∴BD=AB=48×=12cm.
AC=2×=12cm.
∴BD=12cm,AC=12cm.

(2)S菱形ABCD=×两条对角线的乘积=×12×12=72cm2
解析分析:在菱形ABCD中,∠A与∠B互补,即∠A+∠B=180°,因为∠A与∠B的度数比为1:2,就可求出∠A=60°,∠B=120°,根据菱形的性质得到∠BDA=120°×=60°,则△ABD是正三角形,所以BD=AB=48×=12cm,根据勾股定理得到AC的值;然后根据菱形的面积公式求解.

点评:本题考查的是菱形的面积求法及菱形性质的综合.
以上问题属网友观点,不代表本站立场,仅供参考!