如图,△ABC是⊙O的内接三角形,AB为⊙O的直径,点D为⊙O上一点,若∠ACD=50°,则∠BAD的大小为A.35°B.50°C.40°D.60°
网友回答
C
解析分析:连接BD,由AB为圆的直径,利用直径所对的角为直角得到三角形ABD为直角三角形,再利用圆周角定理得到∠ACD=∠ABD=50°,利用直角三角形两锐角互余,即可求出∠BAD的大小.
解答:解:连接BD,
∵AB为圆O的直径,
∴∠ADB=90°,
∵∠ACD=∠ABD=50°,
∴∠BAD=90°-50°=40°.
故选C.
点评:此题考查了圆周角定理,熟练掌握圆周角定理是解本题的关键.