【十字相乘法口诀图解】十字相乘的具体操作方法要图文并茂

发布时间:2021-03-26 22:28:01

十字相乘的具体操作方法要图文并茂 数学

网友回答

【答案】 编辑本段]
  例1 把2x^2-7x+3分解因式.
  分析:先分解二次项系数,分别写在十字交叉线的左上角和左下角,再分解常数项,分
  别写在十字交叉线的右上角和右下角,然后交叉相乘,求代数和,使其等于一次项系数.
  分解二次项系数(只取正因数):
  2=1×2=2×1;
  分解常数项:
  3=1×3=1×3==(-3)×(-1)=(-1)×(-3).
  用画十字交叉线方法表示下列四种情况:
  1 1
  ╳
  2 3
  1×3+2×1
  =5
  1 3
  ╳
  2 1
  1×1+2×3
  =7
  1 -1
  ╳
  2 -3
  1×(-3)+2×(-1)
  =-5
  1 -3
  ╳
  2 -1
  1×(-1)+2×(-3)
  =-7
  经过观察,第四种情况是正确的,这是因为交叉相乘后,两项代数和恰等于一次项系数-7.
  解 2x^2-7x+3=(x-3)(2x-1).
  一般地,对于二次三项式ax2+bx+c(a≠0),如果二次项系数a可以分解成两个因数之积,即a=a1a2,常数项c可以分解成两个因数之积,即c=c1c2,把a1,a2,c1,c2,排列如下:
  a1 c1
  a2 c2
  a1a2+a2c1
  按斜线交叉相乘,再相加,得到a1c2+a2c1,若它正好等于二次三项式ax2+bx+c的一次项系数b,即a1c2+a2c1=b,那么二次三项式就可以分解为两个因式a1x+c1与a2x+c2之积,即
  ax2+bx+c=(a1x+c1)(a2x+c2).
  像这种借助画十字交叉线分解系数,从而帮助我们把二次三项式分解因式的方法,通常
  叫做十字相乘法.
  例2 把6x^2-7x-5分解因式.
  分析:按照例1的方法,分解二次项系数6及常数项-5,把它们分别排列,可有8种不同的排列方法,其中的一种
  2 1
  ╳
  3 -5
  2×(-5)+3×1=-7
  是正确的,因此原多项式可以用十字相乘法分解因式.
  解 6x^2-7x-5=(2x+1)(3x-5).
  指出:通过例1和例2可以看到,运用十字相乘法把一个二次项系数不是1的二次三项式因式分解,往往要经过多次观察,才能确定是否可以用十字相乘法分解因式.
  对于二次项系数是1的二次三项式,也可以用十字相乘法分解因式,这时只需考虑如何把常数项分解因数.例如把x^2+2x-15分解因式,十字相乘法是
  1 -3
  ╳
  1 5
  1×5+1×(-3)=2
  所以x^2+2x-15=(x-3)(x+5).
以上问题属网友观点,不代表本站立场,仅供参考!