已知二次函数y=x2-2mx+m2-1.(1)当二次函数的图象经过坐标原点O(0,0)时,求二次函数的解析式;(2)如图,当m=2时,该抛物线与y轴交于点C,顶点为D

发布时间:2020-08-11 21:31:00

已知二次函数y=x2-2mx+m2-1.
(1)当二次函数的图象经过坐标原点O(0,0)时,求二次函数的解析式;
(2)如图,当m=2时,该抛物线与y轴交于点C,顶点为D,求C、D两点的坐标;
(3)在(2)的条件下,x轴上是否存在一点P,使得PC+PD最短?若P点存在,求出P点的坐标;若P点不存在,请说明理由.

网友回答

解:(1)∵二次函数的图象经过坐标原点O(0,0),
∴代入二次函数y=x2-2mx+m2-1,得出:m2-1=0,
解得:m=±1,
∴二次函数的解析式为:y=x2-2x或y=x2+2x;

(2)∵m=2,
∴二次函数y=x2-2mx+m2-1得:y=x2-4x+3=(x-2)2-1,
∴抛物线的顶点为:D(2,-1),
当x=0时,y=3,
∴C点坐标为:(0,3);

(3)当P、C、D共线时PC+PD最短,
过点D作DE⊥y轴于点E,
∵PO∥DE,
∴=,
∴=,
解得:PO=,
∴PC+PD最短时,P点的坐标为:P(,0).
解析分析:(1)根据二次函数的图象经过坐标原点O(0,0),直接代入求出m的值即可;
(2)根据m=2,代入求出二次函数解析式,进而利用配方法求出顶点坐标以及图象与y轴交点即可;
(3)根据当P、C、D共线时PC+PD最短,利用平行线分线段成比例定理得出PO的长即可得出
以上问题属网友观点,不代表本站立场,仅供参考!