我有一道高等数学的数字排列组合的难题,求答案?请高手!
推荐回答
解:分情况讨论:1、当D=3时,A+B+C=3,则0~5中三数和为3的情况(不区分A、B、C具体为何值)有(0,0,3),(0,1,2),(1,1,1)。将这3种取值情况对A、B、C进行赋值,组合总数为:1C3+3!+1=3+6+1=10(种)具体组合:0033,0303,3003,0123,0213,1023,1203,2013,2103,1113 2、当D=2时,A+B+C=4,则0~5中三数和为3的情况(不区分A、B、C具体为何值)有(0,0,4),(0,1,3),(0,2,2),(1,1,2)。将这4种取值情况对A、B、C进行赋值,组合总数为1C3+3!+1C3+1C3=3+6+3+3=15(种)具体组合:0042,0402,4002,0132,0312,1032,1302,3102,3012,0222,2022,2202,1122,1212,2112 3、当D=1时,A+B+C=5,则0~5中三数和为3的情况(不区分A、B、C具体为何值)有(0,0,5),(0,1,4),(0,2,3),(1,1,3),(1,2,2)。将这5种取值情况对A、B、C进行赋值,组合总数为1C3+3!+3!+1C3+1C3=3+6+6+3+3=21(种)具体组合:0051,0501,5001,0141,0411,1041,1401,4101,4011,0231,0321,2031,2301,3021,3201,1131,1311,3111,1221,2121,2211 4、当D=0时,A+B+C=6,则0~5中三数和为3的情况(不区分A、B、C具体为何值)有(0,1,5),(0,3,3),(0,2,4),(1,1,4),(1,2,3),(2,2,2)。将这6种取值情况对A、B、C进行赋值,组合总数为3!+1C3+3!+1C3+3!+1=6+3+6+3+6+1=25(种)具体组合:0150,0510,1050,1500,5010,5100,0330,3030,3300,0240,0420,2040,2400,4020,4200,1140,1410,4110,1230,1320,2130,2310,3120,3210,2220 综合1-4,可知,一共有10+15+21+25=71(种)组合方式 PS:楼主,具体情况一一写出来,可是花了我不少时间,你要不采纳,都对不起我了。望采纳。不懂可追问。