发布时间:2019-08-07 21:05:23
求下列曲线在映射 w = (z + 1) / (z - i) 下的像。
(1)y = x; (2) Im z = 1; (3) |z| = 1; (4) |z-i| = 1
补充:复变函数w = (z + 1) / (z - i)=(x+1+yi)/[x+(y-1)i]
=(x+1+yi)[x-(y-1)i]/[x^2+(y-1)^2]
=[(x^2+x+y^2-y)+(x+1-y)i]/[x^2+(y-1)^2]
u=(x^2+x+y^2-y)/[x^2+(y-1)^2]
v=(x+1-y)/[x^2+(y-1)^2]
(1) y=x
u=2x^2/(2x^2-2x+1)
v=1/(2x^2-2x+1)
(u-1)^2+(v-1)^2=1
(2)Imz=1 y=1
u=(x^2+x)/x^2=1+1/x
v=x/x^2=1/x
u=v+1
(3)x^2+y^2=1
u=(1+x-y)/[2-2y]
v=(1+x-y)/[2-2y]
u=v
(4) x^2+(y-1)^2=1
u=(x+y)
v=(x+1-y)
(u-1)^2+v^2=2