高中数学:已知数列an的前n项和为sn,且满足sn=4/3(an–1)

发布时间:2019-08-27 13:11:21

高中数学:已知数列an的前n项和为sn,且满足sn=4/3(an–1)

推荐回答

(1)n=1时,a1=(4/3)(a1-1)a1=4n≥2时,an=Sn-S(n-1)=(4/3)(an-1)-(4/3)[a(n-1)-1]an/a(n-1)=4,为定值。数列{an}是以4为首项,4为公比的等比数列an=4·4ⁿ⁻¹=4ⁿ数列{an}的通项公式为an=4ⁿ(2)bn=log2(an)=log2(4ⁿ)=2n1/[(bn-1)(bn+1)]=1/[(2n-1)(2n+1)]=½[1/(2n-1)- 1/(2n+1)]Tn=½[1/1 -1/3 +1/3 -1/5+...+1/(2n-1) -1/(2n+1)]=½[1- 1/(2n+1)]=½- 1/(4n+2)1/(4n+2)>0,½- 1/(4n+2)<½Tn<½
以上问题属网友观点,不代表本站立场,仅供参考!