发布时间:2019-08-27 15:52:59
(2)lim(x→√3)(x^2-3)/(x^4+x^2+1)
=0/13
=0
(4)lim(x→3)(x-3)/(x^2-9)
=lim(x→3)(x-3)/[(x+3)(x-3)]
=lim(x→3)1/(x+3)
=1/6
解:(2)x→√3 lim(x²-3)/(x⁴+x²+1)
=[(√3)²-3]/[(√3)⁴+(√3)²+1]
=0/13
=0
(4)x→3 lim(x-3)/(x²-9)
=lim(x-3)/[(x+3)(x-3)]
=lim 1/(x+3)
=1/(3+3)
=1/6
(2)在根号3处有定义且连续,你直接把根号3代进去呗。。。
(4)因为极限是在3的一个邻域内取值,不等于3,所以你可以把分子分母的x-3消掉,即在3的邻域内且不等于3时原函数=1/(x+3),极限显然是1/6.。。